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Abstract—In this work, we take a step towards understanding
and defending against spying browser extensions. These are
extensions repurposed to capture online activities of a user
and communicate the collected sensitive information to a
third-party domain. We conduct an empirical study of such
extensions on the Chrome Web Store. First, we present an in-
depth analysis of the spying behavior of these extensions. We
observe that these extensions steal a variety of sensitive user
information, such as the complete browsing history (e.g., the
sequence of web traversals), online social network (OSN) access
tokens, IP address, and geolocation. Second, we investigate
the potential for automatically detecting spying extensions by
applying machine learning schemes. We show that using a
Recurrent Neural Network (RNN), the sequence of browser
API calls made by an extension can be a robust feature,
outperforming hand-crafted features (used in prior work on
malicious extensions) to detect spying extensions. Our RNN
based detection scheme achieves a high precision (90.02%) and
recall (93.31%) in detecting spying extensions.

Index Terms—spying browser extensions; information tracking

1. Introduction

Many websites today rely on advertising to sustain their
services. Online ad platforms have developed sophisticated
user tracking systems to capture user behavior across web-
sites in order to generate highly personalized ads. Several
studies have been conducted to understand third-party user
tracking on the web, where a third-party entity (like social
media widget), embedded by the first-party site the user
visits, can log the presence and other activities of the user
on that site [1] [2]. Unfortunately, user tracking has reached
to a state where even privileged software running on a user’s
browser is stealing user information [3]. In this work, we
take a step towards understanding and defending against this
new type of privacy risk—browser extensions that spy on
user information.

A browser extension is an add-on software that enhances
functionality of the browser. We consider a spying extension
as one which accesses user information (e.g., browsing

history) and sends the information to third-party domains,
when its core functionality does not require such information
communication (Section 3). Such information theft is a
serious violation of user privacy. For example, a user’s
browsing history can contain URLs referencing private doc-
uments (e.g., Google docs) or the URL parameters can
reveal privacy sensitive activities performed by the user on
a site (e.g., online e-commerce transactions, password based
authentication). Moreover, if private data is further sold or
exchanged with cyber-criminals [4], it can be misused in
numerous ways. Left unchecked, users may be exposed to
various risks, including identity theft [5], and financial loss.

Compared to other types of user tracking, spying by
browser extensions deserves special attention. Unlike web
pages, browser extensions persist through the entire browser
life cycle, and can access in-depth user browsing activities
across all websites. By making privileged API calls to the
browser, extensions can access the user’s browsing history,
current open tabs, record keyboard inputs and more. On the
other hand, third-party web trackers can only track users on
sites where they are embedded by the publisher, and thus
obtain a “limited” or fragmented view of a user’s entire
browsing behavior. Also note that extensions are available
on most popular browsers (e.g., Chrome, Safari, and Fire-
fox) and have 510 million cumulative installs in Chrome.
Therefore, spying extension developers have a large user
base that they can target.

Identifying spying behavior is challenging. Given an
extension, automatically identifying the flow of sensitive
user information is a non-trivial task [6]. Moreover, we
observe spying extensions that obfuscate user information
before sending it to remote servers, and those that switch
between spying and non-spying states during their life-time
(e.g., using remote Command-and-Control triggers). Such
behavior further complicates the identification.

To bootstrap our analysis, we resort to expert manual
investigation of behavioral logs (traces of network, storage,
and browser API requests made by an extension) of ex-
tensions to identify spying behavior (Section 3). To reduce
manual effort, we apply several heuristics to automatically
short-list a candidate set of possible spying extensions,
among all the 43,521 extensions on the Chrome store. After
manually investigating over 1,000 extensions in the candi-



date set, we discover 218 spying extensions. This dataset
provides an opportunity to better understand spying behavior
and to build a defense scheme that can automatically detect
spying extensions (ie without any manual effort).

We start by uncovering the modus operandi of spying
extensions and analyze their characteristics (Section 4). Spy-
ing extensions steal browsing history, social media access
tokens, IP address and geolocation of users. Surprisingly,
spying extensions are as popular (based on user base) and
have similar ratings as other extensions on the Chrome store.
We suspect that users are mostly unaware of the spying
behavior as only 12 out of 218 extensions received reports
of any suspicious behavior from users.

Next, we focus on automatically detecting spying exten-
sions. While a lot of prior work has focused on HoneyPages
to trigger and catch malicious behavior by extensions [7],
and information flow control based approaches [6] [8] [9];
we take an alternate approach of leveraging recent advances
in machine learning (ML) for detection. Practicality and
effectiveness of ML-based defenses has encouraged the
industry (e.g., Google) to also adopt such approaches to
protect against malicious extensions [10].

As is the case with any ML-based defense, we start by
first identifying a robust feature. Prior work on detecting
malicious extensions relies on extensive feature engineering
to craft a large number of features (e.g., features based on
extension meta-data, source code, and network, storage and
API requests) [10]. Surprisingly, our analysis reveals that
most of the existing features are ineffective in detecting
spying extensions (Section 5.2). Instead, browser API calls
modeled as sequential data provides the highest predictive
power, thus obviating the need for complex hand-crafted
features. We further discuss the benefits and robustness
aspects of using API call sequence for detection.

However, browser API call sequences can contain com-
plex sequential patterns which makes traditional n-gram
based sequence classification approaches ineffective in our
case. We observe that recent developments in a class of deep
neural networks called Recurrent Neural Networks (RNN)
are well suited for our scenario. We present an RNN based
detection scheme that is capable of learning sophisticated
patterns in API call sequences [11]. An in-depth evalu-
ation of our RNN based approach shows that it outper-
forms traditional ML schemes and achieves a high precision
(90.02%) and recall (93.31%) in detecting spying extensions
(Section 5.4). Further, our RNN-based classifier additionally
identified 65 previously unknown spying extensions. Finally,
we discuss deployment aspects of our approach. While our
scheme can be used in a centralized setting by analyzing
the extensions in a controlled environment, we also explore
the potential for pushing the detection to the edge at user’s
browser (Section 6).

2. Background

We provide a brief overview of the building blocks of a
Google Chrome extension and how developers can publish
extensions for end-users [12]. Although we focus on Chrome

extensions, most of the concepts apply to other browsers as
well, for example, Firefox with WebExtensions [13].

Extension Architecture. Browser extensions are software
programs running on web browsers, providing extended
browsing functionality to users. An extension consists of
JavaScript, HTML, CSS, and other web resources that are
needed for rendering web pages. The main logic of an
extension is usually placed in a background page where
programs keep running during the entire browser session.
Many extensions also use content scripts that are programs
injected into a web page to gain access to the page resources.

Similar to web pages, extensions have access to all
Web APIs, such as standard JavaScript API, XMLHttpRe-
quest, and DOM. More importantly, Chrome extensions are
exposed to a set of privileged browser APIs, called the
Chrome API. Based on the functionality, Chrome API is
bundled as various feature endpoints, such as web requests
(e.g., listening or tampering network requests), bookmarks,
history, cookies, storage, and tabs. In order to gain access to
the Chrome API, extension developers have to specifically
request permissions in the Manifest file. When installing an
extension, users have to decide to accept these permission
requests or not. For example, the cookie permission in the
Manifest file enables extensions to make API calls to read
cookies (cookie.get) and change cookies (cookie.set). With
the necessary permissions, extensions can monitor all user
activities in browser. It should be noted that other browsers,
Safari and Firefox also provide a similar privileged Browser
API to extensions [13] [14].

Chrome Web Store. The Chrome Web Store serves as a
repository for all extensions and provides a low entry barrier
for developers to publish extensions. However, due to the
rampant increase of malicious extensions, Chrome now asks
for a one-time sign-up fee to publish extensions [15], and
does not allow users to install extensions sourced outside
the Chrome Web Store ecosystem [16], unless a deliber-
ate developer mode is enabled by the user. Additionally,
Google is known to constantly monitor the extension store
to identify malicious browser extensions [10]. Despite these
countermeasures, our findings show persistent presence of
spying extensions on the Chrome Web Store.

3. Data Collection

3.1. Ground Truth Data of Spying Extensions

To conduct our study, we first need a large sample of spying
extensions. In this section, we describe our methodology
for obtaining a ground-truth dataset of spying extensions.
In the rest of the paper, we use this dataset to uncover
the operational aspects of spying extensions and to propose
a machine learning-based technique to automatically detect
spying extensions.

Spying Extensions: We define a spying extension as one
which accesses and sends user information to a third-party
domain, when the claimed functionality of the extension
(on the Chrome store) does not mention the requirement of
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Figure 1: Pipeline to identify spying extensions.

such user information. Leakage mechanisms include com-
munication events based on Web API calls (e.g., POST
requests via XMLHttpRequest) or those based on Chrome
API endpoints. Leakage based on HTTP referrer header
is assumed as accidental and is not considered as spying
behavior.

Table 1 gives examples of 5 spying extensions with an
apparent disconnect between the claimed functionality of
each extension and the user information they collect. For
example, an extension called “Pacman™' provides a launch
icon for a game. However, this extension spies on the brows-
ing history of the user and does not provide any description
about requiring browsing history for its functionality. We
observe that all spying extensions in our dataset have a
similar trait, thus suggesting leakage of user information
with potential malicious intent.

Data Collection Pipeline: We first conduct a crawl of
all available extensions on the Chrome store and download
43,521 extensions spanning 12 categories. We identify spy-
ing behavior by relying on human expert verification. Since
this requires considerable manual effort, we first shortlist
possible spying candidates among all the extensions in the
Chrome store, and manually verify only the short-listed
samples. We divide our data collection pipeline into three
procedures. ®We first identify a candidate set of potential
spying extensions by applying various heuristics. @ Next,
the extensions in the candidate set are verified by three
human experts by analyzing behavioral logs generated by
running the extension in a controlled environment. ® We
further expand the candidate using various signatures (e.g.,
based on file names and source code) extracted from newly
identified spying extensions. Steps @ and ® are repeated
until no new spying extensions are found.

@ Identifying candidates for verification: We use the
following 4 techniques to build a candidate set.

o Browser Extension Monetization Services: There are
extension monetization services that incentivize exten-
sion developers to insert Javascript-based user tracking
code in the source code’. The tracking code is used
by the monetization services to collect sensitive infor-
mation about extension users, and developers are paid
in exchange for such information. The monetization
services may also inject advertisements on the client-

1. chrome.google.com/webstore/detail/pacman/
ffhefikmbepljajkbhedocnmgagdpajo
2. e.g., http://ext.guru, https://monetizus.com, http://www.adonads.com

side and developers earn a fraction of the generated
ad revenue. Using web search with specific keywords
(e.g., browser extension monetization), we collect a list
of 15 popular monetization services. We short-list 115
extensions from the Chrome store that are developed
by one of these 15 monetization services. In step @,
we verify 84 out of these 115 extensions to be spying.

o Filename Based Signatures: We look for filename
based cues to identify spying extensions. We use reg-
ular expressions like - *track™*.js, *trk*.js, *user*.js,
*stats*.js, *click*.js to locate files within the packaged
code of extensions. We discover 79 extensions with
suspicious file names matching our criteria and later
find 3 to be spying.

o Permission Based Filtering: Previous work has shown
that certain permissions (and their combinations) listed
in the Manifest file can be misused by developers to
enable malicious behavior [7]. We extract a candi-
date set of 150 suspicious extensions which ask for
such permissions (e.g., background, webRequest, and
activeTab). Among these extensions, we verify five
extensions to be spying.

e Reported Extensions: In the past, there have been sev-
eral media reports of spying extensions [17]. We search
the Chrome store for 30 extensions reported for spying
in the last one year, and find 8 extensions to be still
available on the store.

@ Verifying whether an extension is spying: After in-
stalling the extension, we apply an exhaustive web workload
(covering the top 10 Alexa sites in English) that triggers a
variety of browser actions (e.g., form filling, tab open, mouse
scroll) to collect extension behavioral logs. We collect in-
formation about network requests, changes to the client-side
storage, and Chrome API calls to aid our manual human
verification process. Chrome API calls are logged using the
Chrome Extensions Developer Tool In order to capture
networks requests generated by the extension, we use a
record-replay network tracing setup*. In the record phase,
the workload is applied without loading the extension, and
all network requests are cached. In the replay phase, we run
the workload with the extension loaded and serve requests
from the cache when available and log any additional HTTP
requests generated by the extension.

In our manual investigation process, we attempt to trace
the flow of sensitive user information (e.g., browsing history,
form data) to third-party sites. We start by investigating the
client-side storage changes and the Chrome API calls made
by the extension to identify any access to user information.
Next, we examine the network logs to determine any user
information communicated to a third-party site as parame-
ters of a GET request, or as payload in a POST request. One
of the challenges here is that user information is sometimes
communicated in an obfuscated form using various encod-
ing schemes (e.g., base64). We apply appropriate decoding

3. https://chrome.google.com/webstore/detail/
ohmmkhmmmpcnpikjeljgnaoabkaalbgc/
4. https://github.com/chromium/web- page-replay



Extension Developer # Users Claimed Functionality Information Stolen

Block Site wips 1,072,111  “automatically blocks websites of your choice” Browsing History

HolaSoyGerman topapps 75,962 “... know when a new German video rises, either from HolSoyGer- ~ Browsing History
man [YouTube channel]...”

SwytShop swtyshop 35,015 “automatically finds lower prices while you shop” Browsing History

Pacman wips 22,670 “one click on the icon and play it [Pacman] right in your browser”  Browsing History

Koukis Youtube oeurstudio.com 2,662

shortcut to go to Kouki’s YouTube channel

Domains Visited

TABLE 1: Difference in claimed functionality and user information stolen by spying extensions.

schemes (whenever known) to identify such cases. We give
more details of our verification technique in Appendix A.

® Expanding the candidate set: We extract various
signatures from the spying extensions identified in step @
to search for new extensions to be added to the candidate
set. Signatures are extracted based on file names, developer
identifiers, URLs in the source code, and Javascript code
snippets. Next, we add any extension in the Chrome store
with matching signatures to the candidate set. More details
of our data expansion procedure are available in the Ap-
pendix A.

Overall, we start with an initial candidate set of 374
extensions, and further expand it to 1,217 extensions after
repeating steps @ and ®. In total, we identify 218 spying
extensions.

Strengths and Limitations of Our Data Collection
Methodology. The main strength of our approach is that we
never flag an extension that does not steal user information
as spying. However, given the manual effort required, our
approach is not scalable. In addition, we may not be able
to identify all the spying extensions in the Chrome store for
two key reasons: First, our candidate set building approach
is based on a limited set of heuristics and is unlikely to
shortlist all spying extensions on the Chrome store. Second,
spying extensions can use sophisticated encoding schemes
to hide user information that we may not be able to identify.

To overcome these limitations, in Section 5, we propose
a machine learning based scheme that automatically detects
spying extensions (without any manual effort).

3.2. Dataset Description

In this work, we use two types of datasets: (1) A near-
complete dataset of all extensions available on the Chrome
Web Store as of May 2016 (CWS_2A11), (2) A dataset of spy-
ing Chrome extensions (CWS_Spy). CWS_AL11 is collected
by a crawl of the entire Chrome Web Store and CWS_Spy
is the dataset built using the methodology described previ-
ously, between the time period May-July, 2016. For both
datasets, we collect the source code for each extension and
perform an additional crawl to collect publicly available
metadata associated with each extension. Metadata includes
information about the size of the user base, reviews, ratings,
bug reports, general functionality of the extension, and the
developer.

Table 2 shows high-level statistics for the collected data.
The CWS_A11 dataset contains 43,521 extensions (similar

to count reported in prior study [7]) spread over 12 primary
categories. For our CWS__Spy dataset, we identify 218 spy-
ing extensions spanning a diverse range of categories. It is
interesting to note that spying extension developers target
the top categories in CWS_A11l (by volume of extensions),
namely, “Productivity”, “Fun”, and “Communication”, more
than other categories, including “News”. The last column in
Table 2 shows the name of the top spying extension in each
category based on the number of current users.

Communication with Google. Considering the privacy
risks facing users, we followed responsible disclosure pro-
cedure and established communication with Google. We
shared a version of our draft and on 8 June, 2017 addi-
tionally shared the details of spying extensions identified in
our work.

4. Analysis of Spying Extensions

We analyze various aspects of spying extensions, includ-
ing its behavior, popularity and reputation, and developers.
Our analysis serves as a first step towards understanding
operational aspects of spying extensions before we explore
techniques for automatic detection in Section 5.

4.1. Modus Operandi of Spying Extensions

Information Tracked. Table 3 shows the different types
of user information tracked by spying extensions. We find
that most of the extensions steal browsing history of users
(i.e. complete URLs of sites visited), albeit there are two
extensions that only track domains visited by the users.
Information about browsing history can provide access to
sensitive and private documents on services like Google
Drive, Dropbox and Pastebin where a document can be
accessed by anyone with a link to the document. We also
found extensions stealing IP address, geolocation, and social
media access tokens. In all cases, we found explicit code to
steal such information. In fact, extensions were using social
media access tokens to access private information of users,
such as photos and posts with limited privacy settings.

Spying Behavior. To understand how a spying extension
works, we investigate the following aspects: (1) ability to
access specific types of sensitive user information, (2) ability
to store information (may not be used always), (3) ability
to send tracked information to a remote server, (4) remote
entities stealing the information, and (5) Remote Command-
and-Control (CnC) setup used by spying extensions.



Category #Extensions (% on Chrome Webstore)  Spying (%)  Top Spying Extension #Users
CWS_All CWS_Spy
Productivity 14,547 (33.42) 31 (14.22) Block site 1,072,111
Fun 6,613 (15.19) 80 (36.69) Channel Sub Box for YouTube 142,621
Communication 5,764 (13.24) 35 (16.05) HolaSoyGerman 106,022
Web Development 4,162 (9.56) 5(2.29) Web Developer Tools 2,081
Accessibility 4,062 (9.33) 7 (3.21) GouQi 599
Search Tools 2,493 (5.73) 6 (2.75) Handy maps 6,451
Shopping 2,060 (4.73) 7 (3.21) SwytShop 35,015
News 1,495 (3.43) 32 (14.68) Custom RSS news 6,126
Blogging 835 (1.92) 11 (5.04) Koukis Youtube 2,662
Photos 651 (1.49) 1 (0.46) Take a picture everyday 200
Sports 569 (1.31) 3 (1.38) RotoGrinders Fan Duel Tool 7,818
By Google 62 (0.14) 0
Total 43,521 218

TABLE 2: Distribution of spying and other extensions across various categories.

Information Tracked #Total
Browsing History 202
IP Address, Geolocation 10
OSM Access Tokens 4
Domain Visited 2
Total Unique 218

TABLE 3: User information stolen by spying extensions.

In each part (whenever relevant), we analyze the specific
permissions used by extensions to access various privileged
Chrome API endpoints. To obtain this information, we first
identify the different Chrome API endpoints required by
spying extensions for accessing, storing and sending per-
sonal data (Section 3). We then map the different Chrome
API endpoints used by an extension to specific permission
requirements>.

(1) Accessing sensitive user information. Table 4 shows
a list of permissions required for accessing sensitive user
information. For comparison purposes, we also show the
number (and percentage) of all other extensions (CWS_A11\
CWS_Spy) that use the same permissions (possibly for
other purposes). Spying extensions can continuously mon-
itor user’s browsing behavior with the help of ‘tabs’, ‘ac-
tiveTab’ and ‘all urls’ permissions which enable them to
access the URL being visited at the moment by a user. We
observe that the ‘tabs’ permission ranks at the top (being
used by over 94% of spying extensions), but also used by a
majority of all other extensions. Similarly, the ‘cookies’ per-
mission is also used by most (83%) of the spying extensions
(e.g., to access social media access tokens), but only by a
smaller fraction (8.9%) of all other extensions. Browsing
history and location can also be tracked by direct access to
‘history’ and ‘geolocation’ permissions.

(2) Storing sensitive user information. Spying extensions
may or may not store user information on the client side.
If they do, client-side cookies and ‘unlimited storage’ per-
missions are used to store information either in plain text

5. Chrome
permissions

Permissions  developer.chrome.com/extensions/declare_

CWS_Spy CWS_All\ CWS_Spy
Permission #ext (%) #ext (%)
1 tabs 207 (94.95) 22,483 (52.24)
2 cookies 181 (83.03) 3,844 (8.93)
3 storage 22 (10.09) 13,376 (31.08)
4 all urls 14 (6.42) 4,022 (9.35)
5 history 6 (2.75) 862 (2.0)
6  geolocation 3 (1.38) 378 (0.88)
7  activeTab 3 (1.38) 5,920 (13.76)

TABLE 4: Permissions to access user information.

or in obfuscated form. This data is stored and accessed
by extensions at regular intervals or periodically by a CnC
remote server controlling the extension. We find that most
of the spying extensions (188 out of 218) are storing user
information before sending it to remote servers. We observe
that 83% of spying extensions access ‘cookie’ permission
(as compared to only 8.93% other extensions) and 7% of
spying extensions have access to ‘unlimitedStorage’ (com-
pared to 6% other extensions). Thus, inspecting local storage
could be useful to identify spying behavior.

(3) Sending sensitive user information. Spying exten-
sions use various techniques to send user information to
third party sites. We find 64% of spying extensions using
Chrome’s WebRequest permission to send network request
as a POST query with an obfuscated payload containing user
information. The remaining extensions use an XMLHttpRe-
quest Web API call, instead of a Chrome API call.

(4) Remote spying entity. We find that the 218 spying
extensions send sensitive user information to 29 unique
(TLD+1) domains. While most of the extensions contact
a single domain, there are six extensions contacting more
than one domain, thus sharing user data with multiple
entities. The top 4 domains in our dataset are wips.com,
upalytics.com, analyticssgoogle.com (different from Google
Analytics) and fairsharelabs.com.

To understand the reputation of the tracking domains,
we query three popular blacklisting services—Google
SafeBrowsing API [19], VirusTotal [20] and Phishtank [21].
We also analyze their WoT (Web of Trust [22]) ranking



which is a crowd-sourced website reputation metric. None of
the domains are blacklisted by any of the services, indicating
that spying extensions are difficult to identify based on their
tracker domains. In fact, eight tracker domains have a WOT
score of over 9.0 (out of 10.0) which indicates very positive
crowdsourced feedback.

(5) Control of spying extension by a CnC server. We
observe that some extensions do not start spying on users
at the time of installation. They need to be triggered by
a remote server to either start collecting user data or to
send the stored user data to the remote server. We observe
two methods being used to control spying state: (1) by
toggling flags in cookies and client-side storage, and (2)
time-based triggers which sends information after a certain
period of time. This functionality makes detection of spying
extensions a challenging task as they may act benign during
some period of time. We identify 88 extensions where the
tracking code was toggled on and off using a state variable
in the cookie store via the ‘cookie.set” API call. During
communication, the remote server can change the cookie
state to control spying behavior. We find 2 extensions using
time-based triggers which start tracking after fixed periods
according to a time defined in a source JavaScript file. These
control triggers require the ‘webRequest’ and ‘cookies’ per-
missions. The remaining 128 extensions did not require any
specific triggers to start spying.

4.2. Popularity and Reputation

We analyze the popularity and reputation (based on crowd-
sourced feedback) of spying extensions and compare them
with all extensions on the Chrome Store.

User Base and Ratings. Spying extensions account for
over 2.4 million cumulative installs, with a median rating
of 4.4. Figure 2 shows the distribution of various popularity
statistics. Spying extensions have a similar distribution of
number of users, average rating, and number of ratings as
all other extensions on the Chrome store. Thus, it would be
hard to distinguish between spying and benign extensions
based on popularity metrics by both Google (browser plat-
form provider) and by users deciding whether to install an
extension. Spying extensions include 190 extensions with
over 10k users, and 1 extension with over a million users.
This is alarming considering the privacy risk. Recently, Web-
of-Trust extension with 140 million users was taken down
for spying [4].

Bug Reports, Questions and Complaints. Chrome Web
Store allows users to submit questions or post suggestions
and problems pertaining to extensions. We crawl these text
reports associated with each extension and analyze it to
identify if users are reporting bugs or complaining about
the functionality of the extension. Out of 218 extensions,
103 (47%) extensions received at least one comment by a
user. We scan the text reports using an extensive set of key-
words (based on manual investigation) indicating suspicious
behavior (e.g., ‘tracking’, ‘keylogger’, ‘steal’, ‘fake’, ‘don’t
install’, “‘malware’). Interestingly, only 12 (5.5%) extensions
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Figure 2: (a) Number of current users for all the Chrome
store extensions, (b) Crowdsourced average rating of ex-
tensions on Chrome Store, (c) Number of votes (count)
contributing rating of extensions on Chrome Store.

received some form of comment reporting suspicious behav-
ior. As spying behavior is hidden in background browser
activities and traffic, it would be difficult for non-expert
users to identify and report such behavior. Our findings
suggest that users are mostly unaware of spying behavior.

4.3. Developers

There are 69 unique developers for our dataset of 218 spying
extensions. While a large fraction of developers (89%),
develop only a single extension, we were surprised to find
that the remaining 11% of developers account for a majority
(65%) of extensions. In fact, this small fraction of developers
rank among the top 100 developers on the Chrome store
based on total number of extensions. Hence, even popular
developers can have a few spying extensions that go unde-
tected and extensions from popular developers can not be
trusted to be safe. We provide more details of a few spying
extensions by popular developers in Appendix A. Recently,
a few extensions by highly rated developers, wips.com and
hoverzoom.com were taken down from the Chrome store
for spying [17].

4.4. Key Takeaways

We highlight the key takeaways from our analysis that would
help us build a robust defense (Section 5.4).

« We identify the permissions that are misused to access,
store and transmit user information. Later in Section 5,
we use these findings to identify a dataset of benign ex-
tensions (non-spying) and develop a machine learning
based model to detect spying behavior.

« Extensions can switch between spying and non-spying
states based on remote and time based triggers. We
devise our detection scheme to capture such dynamic
spying behavior.

« Popularity and other crowd-sourced reputation metrics
serve as unreliable signals (prone to manipulation) for
differentiating spying extensions from others. Thus, we
do not use these metrics to build a detection scheme.



5. Automatically Detecting Spying Extensions

In this section, we explore the use of supervised machine
learning to automatically detect spying extensions. We in-
vestigate effectiveness of prior approaches, before proposing
a new detection scheme that performs better.

5.1. Training and Evaluation Setup

We begin by building a dataset of spying and benign (non-
spying) extensions which can be used to train and evaluate
ML classifiers. Below, we discuss the positive (spying) and
negative (benign) samples used in the ML pipeline.

Positive class. We use previously identified 207 spying
extensions (in Section 3).°

Negative class. We use observations from Section 4 to
identify benign extensions. First, we include 10,131 exten-
sions that do not request any of the permissions misused
by spying extensions to access, store and send user infor-
mation (Table 3). Second, we include 11,235 extensions
that do not make any network requests. These extensions
might access user information, or perform other browser
operations, but do not make network requests. Lastly, we
add 831 extensions that were marked as not spying in
our manual investigation (Section 3). Note that these 831
extensions add diversity to the benign class because they
were initially shortlisted as suspicious, but verified as benign
on manual investigation. These extensions are actually very
similar to spying extensions and most of them make network
requests and/or also access private information. Therefore,
including them makes the detection task more challenging,
and helps to build a better classifier. In total, we identify
16,785 unique benign extensions. We acknowledge that the
representativeness of our negative class is potentially limited
by the usage of heuristics to select extensions. However,
classification performance would only increase if we have
a more diverse negative class.

To reduce the high class imbalance, we use a 1:5 ratio of
positive and negative class and repeat our training/validation
experiments with different samples of benign extensions.
We randomly choose three non-overlapping samples from
the benign dataset, each of size 1,035 extensions. We report
average precision (percentage of detected extensions that are
spying) and recall (percentage of spying extensions that are
detected) over the three runs of the experiment, based on
5-fold cross validation.

5.2. Using Prior Work

Prior work by Jagpal et al used machine learning to au-
tomatically detect malicious extensions—a broader class
of harmful extensions including those that engage in ad
manipulation and social network abuse [10]. In this section,
we first assess the performance of Jagpal er al’s approach

6. Remaining 11 extensions (out of 218) were taken down at the time
of this analysis, and thus could not be included.

on our dataset of spying extensions. For a fair comparison,
we use the same set of features, classifiers and parameters
used by Jagpal et al’s work, as mentioned below.

Feature Engineering. Prior work by Jagpal et al. [10]
takes significant effort to carefully select and model an
exhaustive set of features. We begin by extracting a similar
set of features to detect spying extensions. All the features
are described in detail in Table 5. Note that our feature
set includes all the features (whenever available)’ used by
Jagpal et al [10]. Features are broadly divided into two
categories—static and dynamic.

1) Static Features: These features include permissions
listed in the manifest file (F1), signatures extracted from
the source code (F3) and meta-information like the num-
ber of users, reviews, ratings, etc. (F6). Static features
provide a rich insight into the functionality and structure
of extensions.

2) Dynamic Features: These features capture the traits of
an extension when it is actively running on the client-
side. Every extension is run in a controlled environment
(using the same workload used in Section 3) to record
client-side changes (F4), network behavior (F5), and the
Chrome API calls made by the extension (F2).

ML Classifiers. In addition to using the classifier used
by Jagpal et al., which is Logistic Regression (LR) with
L1 regularization, we experiment with a variety of other
high performing classifier families. We include Decision
Trees, Random Forest, Adaboost (an ensemble method using
Random Forest as the base estimator), SVM (with an RBF
kernel) and a Neural Network. For the Neural Network, we
use an architecture with a single hidden layer having 100
neurons and use stochastic gradient descent with a reLU
activation function. We also use L2 regularization with a
high penalty value, o = 1.0 to limit overfitting.

Detection Performance. Precision and recall values for
the spying class are reported in Table 6. LR-based classifier
used by Japgpal et al. performs poorly over the entire
feature set yielding very low precision and recall of 22.35%
and 24.18%. Thus this technique based on prior work is
ineffective against spying extensions.

Except Neural Network, all other classifiers also yield
low detection performance. Neural Network using all fea-
tures provides the highest precision of 78.12%, and a recall
of 80.32%. More importantly, among the different feature
categories, we obtain the highest classification performance
with category F2, which are features based on Chrome API
calls. Thus there is scope for improving detection perfor-
mance, if we can better leverage the Chrome API call feature
category. We investigate this further in the next section.

7. For example, WoT reputation score of remote URL will be absent for
extensions which do not make a query to an external URL.



Feature Set

Feature Description

F1  Permission Permissions: One-hot vector for manifest permissions
F2  Chrome API Calls  API Call: One-hot vector for invoked Chrome API calls
F3  JavaScript Based Eval: Boolean val. for presence of eval function used in source code
P ) base64: Boolean val. for presence of base64 obfuscation
Cookies: Number of cookie values changes
. . Storage: Number of localstorage changes
F4  Client Side Storage URL in Cookies: Boolean val. for presence of URL in cookies
URL in Storage: Boolean val. for presence of URL in localstorage
XML HTTP: Number of XHR calls made by the extension
GET: Number of GET queries invoked by the extension
F5  Network Log POST: Number of POST queries by the extension
WoT: Crowd-sourced reputation of remote URL
F6  Others Filename Match: One-hot vector for suspicious filenames
Metadata: Rating, number of reviews, number of users
TABLE 5: Features used for automated detection of spying extensions.
LR (used in | DecisionTree Random Forest SVM (rbf) Adaboost Neural Network
Features .
prior work)
P R P R P R P R P R P R
Fl 9.10 1243 | 9.17 10.18 | 13.27 16.02 13.92 15.68 14.87 16.21 65.32 69.87
F2 18.12 | 16.23 | 17.92 | 1322 | 24.89 25.13 25.27 25.83 26.21 24.93 72.04 75.20
F3 18.00 | 16.01 17.35 | 16.72 | 22.16 21.12 16.22 35.11 17.16 31.81 64.81 61.23
F4 1528 | 18.15 | 15.15 | 17.13 | 15.06 19.02 17.32 23.92 20.82 3231 64.19 61.11
F5 15.09 | 1451 18.09 | 14.08 | 22.8 20.15 15.12 31.99 24.83 25.15 67.09 64.28
F6 18.18 | 19.44 | 20.35 | 19.81 | 22.18 19.92 14.27 15.81 22.30 17.17 65.21 64.12
All Feats | 22.35 | 24.18 | 21.73 | 20.19 | 23.96 23.99 24.83 26.79 30.03 3232 | 78.12 80.32

TABLE 6: P(=Precision) and R(=Recall) in % for detecting spying extensions using machine learning classification.

5.3. Our Idea: Leverage Sequential Patterns in API
Calls

Key Insight. Our key insight is that we can distinguish
spying extensions from other extensions based on patterns
in Chrome API call sequences.

We provide a simple illustration of our insight using
a spying and benign extension from our dataset. Figure 3
shows the Chrome API call sequences for these extensions.
For better understanding, the API methods are color coded
based on whether they are access, store or transmit methods.
Access methods are those associated with the following API
endpoints — bookmarks, cookies, history, storage, and tabs.
We focus on these specific endpoints because our dataset
of spying extensions uses these endpoints for accessing
user information. Store operations includes the following
persistent storage endpoints— bookmarks, cookies, history
and storage. Transmit methods include those used to send
and receive HTTP requests. The remaining API methods
are annotated as others. The sequence of these color coded
events is shown across the X-axis, denoting the API call
sequence events of the specific extension.

In Figure 3, there is a striking difference in the patterns
of spying and benign extensions. The spying extension has
access operations closely followed by a transmit operation.
The benign extension on the other hand exhibits network
transmit operations like spying extensions but does not
access any user information.

Note that the above is a very simplistic example of
sequential patterns exhibited by spying and benign exten-
sions. In practice, these patterns could be more complicated.
For example, access and transmit methods may be further
apart in the case of spying extensions, or there might be
benign extensions that also use access and transmit methods
in different ways. In fact, we even do not want to restrict
ourselves by annotating API methods as access, store and
transmit methods. Thus, the key challenge is to automatically
distinguish between spying and benign extensions based on
any available complex patterns in API call sequences.

0000+++AANNEENGOO++AACHANIONONONONONON AT
+++E+0+0A+++ER+++E+-EER+AA+++HR+AAA A+AHH+A

0 10 20 30 40
API Call Sequence

AAAstore  mlE Transmit

Spying
Benign

090 Access 44 Others

Figure 3: Time series of events for a sample of spying and
benign extensions.

Learning Complex Patterns in API Call Sequences to
build a Classifier. Previous study by Canali et al. surveyed
use of n-gram and bags model on system API calls to extract
signatures from malware for malware detection. They found
that N-gram models reach a performance threshold after a
certain sequence length and triggers more false positives
as the sequence length increases [23]. To verify if n-grams
could yield significantly better detection performance, we



repeat our experiments in Section 5.2 by including n-gram of
API calls made by extensions (of size 2 and 3) as a feature.
We observe only a marginal increase of 1.01% precision and
1.23% recall when using the Neural Network based model
with all the existing features along with n-grams. Therefore,
we need a model that can better identify complex sequential
patterns.

We leverage recent advances in deep neural networks,
and use a Recurrent Neural Network (RNN) to learn complex
patterns in sequential data. In fact, RNN models outperform
traditional n-gram based models when modeling sequential
data [11]. In our case, an RNN based classifier takes in as
input, a sequence of API call names to distinguish between
spying and benign extensions. Note that the input sequence
does not include any other metadata associated with API
calls, such as timing information or call parameters.

Benefits of using API Call Sequence. We further motivate
the usefulness of API call sequences (and an RNN) by
highlighting three key advantages.

o Abandon need for hand-crafted features. Learning pat-
terns in API call sequences using an RNN obviates the
need for extensive feature engineering as in previous re-
search. We show that an RNN-based approach can achieve
high detection performance using only sequential data of
API calls.

o Call sequence captures core spying behavior. Chrome
API calls are required for the core functionality and
operation of an extension and especially for enabling
spying capabilities. Therefore, it would be difficult for
a developer to adapt the API call sequence to bypass a
defense (Section 5.4 analyzes robustness of defense). On
the other hand, defenses based on static features would not
be so robust. For example, we have seen in Section 4 that
crowd-sourced reviews and ratings of spying extensions
are similar to that of benign extensions. Even other static
features like file name based signatures can be easily
adapted by a developer to bypass defenses.

o Adapt to dynamic spying behavior. A spying extension
may not be triggered at the time of evaluation. Chrome
API calls can capture changes in the behavior of an
extension which may periodically switch between spying
and benign activities. Thus a defense based on API call
sequence can adapt to dynamic spying behavior.

o Chrome API call sequence encompasses most other dy-
namic features. Though there exist other dynamic features
apart from Chrome API call sequences viz. network log,
change in and client-side storage; API call based features
form a bigger umbrella encompassing other dynamic fea-
tures. Most of the operations captured by network logs
and cookie/storage logs also reflects in the Chrome API
call logs with a corresponding entry, with the exception
of Web API calls (which is available to all web pages).
An example of a Web API call is an XMLHttpRequest
to send and receive information from a remote server.
Later, in Section 5.4, we show how we can augment
Chrome API calls sequences with Web API calls to further
improve detection performance. By tracking such network

requests, note that we can also potentially detect spying
behavior driven by content scripts.

5.4. RNN based Detection Scheme

We present a Recurrent Neural Network (RNN) based se-
quence classification approach to accurately detect spying
extensions. In this section, we explain our proposed model,
assess its performance, and compare it with existing tech-
niques.

RNN Background. Unlike traditional Neural Networks, a
Recurrent Neural Network (RNN) has a notion of “memory”
that captures information seen so far. An RNN has feedback
connections which allow the model to have loops connecting
the output layer to the input, enabling the model to build
a memory about input fed to the network over time. This
enables RNN models to learn patterns in sequential data
such as natural language text or time-series data.

A basic RNN takes a sequence as input, and then at
each training step updates a hidden state (that captures the
memory) to generate an output vector that can be used to
predict the next item in the sequence. Each hidden state is
iteratively updated based on the previous hidden state and
the current input so that the output vector better predicts the
next item in the sequence. While the basic RNN is efficient
at capturing short-term sequential patterns, it is unable to
capture long-term dependencies (or patterns). We use a
special variant of RNN, called Long Short Term Memory
networks (LSTM) that is capable of capturing long-term
dependencies [24].

An LSTM has multiple memory cells, where each mem-
ory cell has special input and forget gates that can capture
long-term dependencies. Using the forget and input gate,
the hidden state of each memory cell is iteratively updated
to forget a fraction of existing memory and to add new
memory, respectively, to better predict the next item in a
sequence. LSTMs have been shown to outperform tradi-
tional sequence classification techniques such as Hidden
Markov Models (HMM) [24]. LSTM has also been shown
to effectively capture dynamic sequential behavior to detect
malicious applications [25] [26].

RNN Model Architecture. We use an LSTM model for
our detection task. As input to the LSTM model, we use
the sequence of Chrome API calls made to specific API
endpoints at a method level. The only pre-processing we
perform on the input sequence is converting each API call
(e.g. cookie.set) to a unique numerical identifier. We use two
hidden LSTM layers with 200 hidden units in each layer,
with a dropout rate of 0.2 (to avoid overfitting) and a reLU
activation function at the output layer. Learning rate is tuned
using RMSprop gradient descent optimization and training
loss is computed using the cross entropy loss function.

RNN Detection Performance. Table 7 shows comparative
results and Figure 4 shows corresponding Precision-Recall
curves. For comparison, we present results for a HMM
model using API call sequence as input, and Neural Network
and Logistic Regression based models using all features



Precision (%) Recall (%)

Neural Network-All 78.12 80.32
Neural Network-API 72.04 75.20
HMM 66.23 63.27
Logistic Regression (LR)  22.35 24.18
RNN 90.02 93.31

TABLE 7: Precision and recall comparison of various models.

(in Table 7). Our RNN based approach outperforms other
approaches with the highest precision (90.024+1.06%) and
recall (93.31+0.92%). From the precision-recall curve, it is
also clear that we need not significantly sacrifice precision
to improve recall for our approach.
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Figure 4: Precision-Recall curve using API call sequences
as a feature to detect spying extensions.

Analysis of False Positives. There are 22 benign extensions
marked as spying by our model. Among them, 17 extensions
access and transmit user information to a remote server.
However, when we corroborate this behavior with their
description on the Chrome Web Store, we find that such
access is required for the functionality of these extensions.
For example, one such extension is called Honeyg, which
is a popular extension to find discount coupons on e-
commerce websites. This extension requires to capture the
URLs visited by the user for its operation. We did not find
any conclusive reason for the remaining 5 benign extensions
marked as spying.

Analysis of False Negatives. There are 7 spying extensions
that we are not able to detect. Among them, 2 extensions
generated a very small trace of API calls (less than 55
API calls, compared to the average call length of 215).
Possibly, these sequences were not long enough for the
RNN model to effectively identify patterns. For these cases,
running a longer workload could trigger more API calls,
and potentially lead to detection. Next, there are 5 spying
extensions that do not use Chrome API calls to transmit
user information, but instead use a Web API call (XML-
HttpRequest) to make network requests. However, it is easy

8. https://chrome.google.com/webstore/detail/
bmnlcjabgnpnenekpadlanbbkooimhnj

to detect these extensions by augmenting the Chrome API
call sequence with Web API calls (discussed next).

Augmenting Chrome API calls Sequences with Web API
Calls. One limitation of our approach (using Chrome API
call sequences) is that we do not consider the network
requests made using the Web API, mainly the XMLHTTP
Requests (XHRs) to send user information. To address this
limitation, we perform an additional experiment where we
train an RNN by merging XHR calls and Chrome API calls
(by ordering the calls based on timestamps). Using this
model, we achieve a higher recall of 95.02% and a higher
precision of 91.32%, compared to the RNN model trained
only using Chrome API calls. Hence, our approach can be
easily extended to further improve detection performance
by incorporating other Web API calls into the RNN input
sequence.

Robustness of RNN Model. An attacker can try to evade
detection by perturbing the API call sequence. To test the
robustness of our RNN model against such attacks, we
perturb the API call sequences of spying extensions and
evaluate impact on detection performance. Perturbation is
done by inserting a ‘benign’ sequence of certain length at
a random position between the first instance of information
access and first instance of information transmit. In practice,
an attacker strategy might be similar where he tries to hide
data leakage by generating noise sequences before sending
out the information to a third party. The sequence to be
inserted is a randomly chosen n-gram sequence from non-
spying extensions. We repeat the experiment for different
lengths of inserted sequence ranging from 1 to 200 (215 is
the average number of API calls for all extensions using
our workload), and perform 5 random trials for each spying
extension. We observe that detection performance drops
slightly as we increase the length of the inserted sequence.
For the longest inserted sequence of 200, our precision drops
to 86.08% (from 90.02%) and recall drops to 89.9% (from
93.31%). This indicates that the RNN model is quite robust
against heavy perturbations.

Theoretically, an attacker can further increase the per-
turbations to evade detection. However, the downside of
such a heavy perturbation would be reduced performance
of the browsing session, which might alert the user. The
browser can also impose rate limits on the API endpoints
to limit the number of operations done by an extension, to
limit abuse and avoid browser slowdown. In addition, if the
attacker increases the perturbations heavily, the extension
might become easier to detect by existing machine learning
models, as the activity patterns might look abnormal. An
attacker can also try to evade detection by reducing the
number of API calls. However, this would only force the
spying extension to behave normally, and potentially limit
information leakage.

5.5. In-the-Wild Detection of Spying Extensions

To discover new spying extensions from rest of the exten-
sions on Chrome Web Store, we use our trained model to



conduct an in-the-wild detection of spying extensions. We
apply our RNN classifier to 42,110 extensions on Chrome-
Store. Our RNN model marks 90 extensions as spying. A
manual investigation and verification confirms 65 extensions
to be spying. Here we give details about these 90 extensions
marked as spying —

Extensions confirmed to be spying: Manual verification
confirms 65 out of 90 extensions to be actually spying. We
found all the spying extensions sending browsing history to
external URLSs, when such an operation was not needed for
their functionality. These 65 spying extensions had a user
base of 4.2 million and 4 of them were taken down after our
analysis. Table 10 gives details of a sample of these newly
found spying extensions which are most popular.

We suspect that there are more spying extensions in
the Chrome Store. We could potentially identify more ex-
tensions by increasing the size of our ground-truth dataset
(currently only 207 spying extensions). Neural networks
become more effective with a larger training dataset. Unlike
Google, we do not have resources to build ground-truth
at scale based on our manual scheme. In fact, prior work
by Google (Jagpal et al) showed that their recall increased
from 77% to 91% by adding newly discovered malicious
extensions (identified over a 2 week period) into the training
set [10].

Unverified: Among the remaining 25 extensions, we were
unable to confirm spying or benign behavior for 5 exten-
sions. The data transmitted by these 5 extensions was highly
obfuscated, and we were unable to decode the network
requests.

Benign but marked as spying: We verify the remaining
20 extensions to be benign. These extensions were accessing
and sending user information to remote servers, but such an
operation was needed for the functionality of the extension.
It is also important to note that our False Positive Rate is
extremely low since we only find 20 false positives after
testing on 42k extensions.

Overall, our in-the-wild experiment shows that we are
able to catch several new spying extensions using a limited
training dataset. The operator can further boost the perfor-
mance of the model by adding new training samples from
newly found spying extensions.

6. Discussion: Defense at the Edge

Usually browser providers (like Google, Mozilla) detect ma-
licious extensions by running the extensions in a controlled
centralized environment [10], which is also possible with our
detection scheme. In this section, we discuss the potential
for an alternative approach of pushing the detection to the
edge at the user’s browser.

Deployment Model. We envision a deployment scenario
where our pre-trained detection scheme is available on the
user’s browser as another extension. In this model, the
detection extension needs to be able to monitor API calls
of other extensions. In the case of Chrome, this monitoring

capability is only available to white-listed extensions (e.g.,
Chrome Apps & Extensions Developer Tool). The detection
tool can analyze API calls made by any extension on the
user’s browser (in real time) and alert the user if it detects
spying behavior.

Benefits of Pushing Detection to the Edge. We discuss

three key benefits.

e Enable detection based on user generated workload. Spy-
ing behavior may be triggered by certain types of usage
patterns (e.g., stealing social media access tokens when
user logs into a social media site). Client-side detection
increases the possibility of covering these cases, making
it harder for spying extensions to evade detection.

o Inform privacy leak to users. In practice, users may have
different expectations of privacy. Client-side detection
allows users to be aware of the specific client-side data
which is being accessed and transmitted by extensions,
which can help them better understand privacy risks as-
sociated with the extensions.

e Early detection of spying behavior. When spying exten-
sions manage to evade centralized detection, client-side
detection provides a second chance to detect them in the
early stage. The question in this case is how quickly can
a client-side detection method identify spying behavior,
once a user starts using the extension. We design an
experiment to understand the amount of user activity (or
API calls) required to detect spying extensions. For each
extension, we apply a workload that includes visiting
10 websites in sequence, and triggering on average 9
different browser events (e.g., mouse movement, clicking,
and form fill) per site. We observe that our approach can
detect extensions with high precision (90.02%) and recall
(93.31%), after analyzing only 28 browser events (or 189
API calls), which is just 20% of the entire workload we
used in the previous sections. This result illustrates the
potential for early client-side detection.

A client-side detection scheme would incur significant
computational overhead if we run a full fledged RNN clas-
sifier on the browser and can impact a user’s browsing
experience. However, the browser provider can use ML
model compression techniques to build a lightweight high
performing ML scheme on the client-side [27]. Recent
efforts have demonstrated the possibility of running deep
neural network models on mobile processors, and achieving
high performance while consuming very low power [28].
Researchers have also explored light-weight machine learn-
ing implementations for web browsers [29]. More recently,
Google and Facebook released lightweight real-time deep
learning frameworks for mobile platforms [30] [31]. There-
fore, a client-side defense looks promising, given the recent
advances in optimized deep learning runtimes.

7. Related Work

User Behavior Tracking. There have been several studies
of third-party user behavior tracking across the Web [1]
[32] [33]. Closely related to our work are recent studies by



Starov et al. [3] and Weissbacher et al. [18] that focus on
browsing history leaking extensions. However, their study
includes any extension that tracks browsing history, includ-
ing benign cases. Instead, we conduct a detailed study of
the more suspicious category of spying extensions, and also
investigate other kinds of information leakage (OSN access
tokens, geolocation). Starov et al. do not propose a robust
detection scheme for tracking extensions. Weissbacher et al.
detects browser history leaking extensions using a machine
learning scheme based on n-grams of API call sequences.
We propose a robust detection scheme based on Recurrent
Neural Network (RNN) that can learn complex patterns in
API call sequences.

Detection of Malicious Browser Extensions. While there
are very few studies focusing on information leakage by
browser extensions, researchers have studied a broader class
of malicious extensions. These include extensions that ex-
hibit rogue behavior, such as - injecting ads, spreading
malware, OSN account hijacking, and information theft [7]
[10] [34].

Prior work has also attempted to automatically detect
malicious extensions. Kapravelos et al. proposed use of
HoneyPages to dynamically run extensions and trigger them
to capture any malicious activity [7]. Shahriar er al. used
an HMM model with code snippets from the source code
of Firefox extensions as input to train a model for auto-
matic detection of malicious extensions [35]. However, this
method fails in the case of extensions with obfuscated source
code. Recently, DeKovan et al. proposed a static heuristic
based approach (using indicators from the source code of
extensions) to flag malicious Chrome and Firefox extensions
which change the layout of Facebook on client-side, or trig-
ger suspicious user activity on Facebook [36]. In addition,
Jagpal et al. proposed a machine learning framework with
extensive feature engineering for malicious extension detec-
tion [10]. In Section 5.2, we showed that this approach yields
poor performance in detecting spying extensions. Moreover,
their approach rely on complex feature engineering and
rule based heuristics. Our RNN based approach captures
dynamic behavior of extensions, and does not need hand-
crafted features.

Information Flow Control (IFC) for Malicious Behavior
Detection. There has been extensive research involving IFC
techniques to detect security vulnerabilities and privacy
leaks in JavaScript based applications [9]. Information Flow
Analysis for Javascript applications focus predominantly
on taint analysis [37], unstructured control flows [38] and
dynamic information flows [39] [40]. Previous research has
also explored IFC based techniques to discover security vul-
nerabilities in browser extensions [6] and detect malicious
extensions which steal sensitive information, such as cookies
and saved passwords [8]. However, IFC based approaches
face certain practical challenges. First, it is hard to find an
exhaustive set of flow patterns that can effectively capture
vulnerabilities. Second, they suffer from taint explosion and
can result in a large number of false positives [41]. In our
work, we take an alternate approach of leveraging the recent

advances in deep neural networks to detect spying behavior.

8. Conclusion

This work presented a detailed study of browser extensions
that steal sensitive user information. We started by building a
dataset of 218 spying extensions on the Chrome store using
expert manual investigation. Such a dataset allowed us to
conduct an in-depth analysis of the modus operandi of these
spying extensions. Being a privileged software residing in
the user’s browser, spying extensions can track online activ-
ities of a user. Spying extensions steal a variety of sensitive
personal information, including the browsing history of the
user. Surprisingly, these extensions are as popular as other
extensions on the Chrome store. Our analysis thus helps to
highlight the privacy risks faced by users of spying browser
extensions.

Next, we investigated techniques to automatically de-
tect spying extensions using machine learning schemes. We
found that an extensive set of hand-crafted features used in
prior work for detecting malicious extensions are ineffective
in our case. Instead, we showed that browser API call
sequences serve as a robust feature to detect spying exten-
sions. Using Recurrent Neural Networks that are best suited
for learning patterns in sequential data, we showed that
spying extensions can be detected with high precision and
recall. Our RNN-based classifier identified 65 new spying
extensions (which were not used for training the classifier)
on the Chrome store. Lastly, we also discussed the potential
for deploying our scheme directly on a user’s browser for
early detection of spying behavior.
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Appendix

(1) Spying Extension Data Expansion Techniques After
obtaining an initial set of 100 verified spying extensions, we
apply the following data expansion techniques over these
verified extensions to obtain a larger candidate set.

« Filename Matching: We extract the file names of

the JavaScript files which are responsible for spying
behavior. We search for extensions with similar file
names (using substring matching) in the Chrome Web
Store and find 384 more extensions out of which we
verified 49 to be spying.

Developer Based Signature: We look for other exten-
sions written by developers of the spying extensions in
our seed dataset. We discover 159 such extensions, and
verify 8 to be spying.

URL Based Signatures: From our seed dataset of
spying extensions we create a list of remote URLs
used to send over user information. We search for other
extensions that include these URLs in the source code.
Out of 145 matches, we verify 46 to be spying. For
the remaining set, we suspect that these extensions
were no longer tracking (or we could not trigger the
spying mode). Also, some of the extensions were not
functioning properly.

JavaScript Based Signatures: From our seed dataset
of spying extensions, we identify JavaScript code snip-
pets used for spying activities. We search for other
extensions using similar code snippets. We find 155
closely matching extensions, and verify 15 to be spying.

(2) Verification of Spying Extension Since it is not pos-
sible to manually investigate each of the 43k extensions
on the Chrome Web Store, we use a combination of semi-
automated heuristics and human verification to flag spying
extensions. As the first step, we use a record-replay setup
and automatically generate — (1) network request log, (2)
changes in client-side storage and (3) browser API calls
made by the extension under review.

Capturing Network Request Log using Record-Replay.
o Record Run: In this phase, we prepare a behavioral

suit for Top 10 Alexa websites. We use a clean session



. #extensions
Baseline
Candidate  Verified

permission based filter 150 5
by monetization services 115 84
reported extensions 30 8
Filename based signatures 79 3
Total (Baseline) 374 100

. #extensions
Data Expansion

Candidate  Verified
filename matching 384 49
more ext by developer 159 8
remote URL match 145 46
JS based signatures 155 15
Total (Data Expansion) 843 118
Total Spying 1,217 218

TABLE 8: We identify spying extensions by first inspecting
an initial dataset of extensions and then expanding the
dataset using the expansion techniques.

without any extensions, and devoid of any previous
cookies, storage, cache or browsing history in this
phase.

« Replay Run: In the replay run we first load the exten-
sion in a new browser session and capture all the HTTP
requests. The requests which generate 404 error help
us to identify potentially untrusted remote URLs the
extension is trying to contact. Next, we execute all the
HTTP requests from the first step (live run). This en-
ables us to capture the real behavior of extension when
given Internet access. We log the resulting redirects and
HTTP requests.

Capturing Storage and Cookie States. In the record run,
we capture the local storage and cookie storage of the
running browser session and compare it with the state after
the replay run. This enables us to capture the storage and
cookie changes caused by the extension under inspection.

Capturing Browser API Access. To capture the browser
API access by the extension, we modify the Chrome Apps
and Extension Developer Tool which helps us to record
details of all the API calls made by the extension along
with the timestamps.

Data Access, Storage, Sending Cues.

o Data Access: We know the permissions and API calls
which are needed to access user information (See Sec-
tion 4). We look for those API calls from the log
we generated to capture the API calls made by an
extension. If any of those API calls are made then we
mark the extension as trying to access user information.

« Data Storage: A spying extension may or may not
store user data. We look for storage/cookie state before
and after the extension is loaded and run to see if any
data was stored by the extension on the client side.

« Data Transfer: If an extension accesses user informa-
tion, we aim to check whether the ‘same’ information is
being sent to remote servers. As the first step, we check
if any information is being sent to remote URLs by
extracting the URLs and IP addresses from our network
capture in the replay-run and live-run. Once we have
these requests and the associated remote URLs, we
try to decode the information that was sent to these
remote URLs. We investigate the GET parameters and
the POST request payload to identify data transfer.
Sometimes, this information can be in plain text. If not,
then we try to decode this information using decoding
functions like base64, double base64 and hex. If the
information being sent matches with the information
being accessed, and the data access and transfer was
happening beyond the functionality of the extension
(as described on the Chrome Web Store), we mark the
extension as ‘spying’.

(3) Popular Developers and their Spying Extensions
Spying extensions by top eight developers (by number of
users) have more than 1.5 million users. More details about
these extensions, and the information stolen is given in
Table 9.

(4) Generating workload for input to RNN For each
extension, we pick a set of 4 websites (from Top 10 Alexa
websites) and perform all browser actions in a controlled
environment with the extension running in the background.
Our workload also includes social media and email sites. We
login to these social media and email sites using dummy
accounts to increase chances of triggering any malicious
activity by an extension. As a result of the dynamic run
of the extension, we capture the network, and API call
logs generated. We then extract the sequence of API calls
from the API call log of each extension. To boost the
data for training our classifiers, we repeat this experiment
thrice for each extension with a different set of 4 websites
each time, hence generating 3 set of sequences for each
extension. As a result, we obtain 621 sequences (for 207
extensions) labeled as spying; and 9,315 sequences (for
3,105 extensions) labeled as benign.

(5) In-the-Wild Study - Newly Found Spying Extensions
Our trained model when applied to the entire Chrome Web
Store finds more spying extensions. Here we give details
of top 10 (based on number of users) newly found spying
extensions in Table 10.



Top Spying Extension

Developer #SpyExt
Name #Users Description Information Stolen
wips 135 Block Site 1,072,111  “automatically blocks websites of your choice” Browsing History
muz.li 1 Muzli 2 107,655 “the freshest links about design and interactive, from  Browsing History
around the web”
topapps 5 HolaSoyGerman 106,022 “... know when a new German video rises, ei- Browsing History
ther from HolSoyGerman or JuegaGerman [ YouTube
channels]...”
padlet.com 1 Padlet Mini 84,309 “collect and bookmark the best of web...” Browsing History
wisestamp.com 1 Add Email Sig- 68,651 “get a professional email signature..” Browsing History
nature
swytshop 1 SwytShop 35,015 “automatically,nds lower prices while you shop” Browsing History
awesomescreenshot 1 Smart Shopper 32,625 “a universal shopping cart to allow cross-site shop-  IP Address
ping...”
rotogrinders 1 RotoGrinders - 7,818 Shortcut to manage rotogrinders.com games Browsing History

FanDuel Tools

TABLE 9: Top Developers (by number of users) and the top spying extension by each developer.

Extension Developer #Users Claimed Functionality Information Stolen
Awesome Screenshot:  awesomescreenshot 1,299,595  “screencast, record screen as video. Screen capture  Browsing History
Screen Video Recorder for full page,,annotate, blur sensitive info, and share
with one-click uploads”
Hover Zoom hoverzoom 894,888 “enlarge thumbnails on mouse over. Works on many  Browsing History
sites (Facebook, Twitter, Flickr, Reddit, Amazon,
Tumblr, etc)”
Speaklt skechboy.com 545,715 “Select text you want to read and listen to it. Speaklt ~ Browsing History
converts text into speech so you no longer need to
read.”
MozBar Moz 375,529 “the all-in-one SEO toolbar for research on the go.”  Browsing History
User-Agent Switcher useragentswitcher 299,771 “...adds a button to switch between user-agents...” Browsing History
Facebook Video Down- freevideodownloader 272,275 “download any video from Facebook” Browsing History
loader
Ratings  Preview  for  ratingspreview 116,745 “show the likes and dislikes bar over every video  Browsing History
YouTube thumbnail in YouTube”
SafeBrowse safebrowse.co 115,265 “navigate without waiting in Adfly, Linkbucks and  Browsing History
other similar sites. No more waiting, no more an-
noying advertising”
SuperBlock Adblocker Superblock 13,887 Ad blocker Browsing History
Power Zoom powerzoom - “to view larger images on any website automatically, =~ Browsing History

all over the Web”

TABLE 10: A sample of newly found spying extensions.



